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A numerical model of the hydrodynamics of the 
thermal bar 

By D U N C A N  E. FARROW 
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK 

(Received 16 January 1995 and in revised form 4 August 1995) 

The thermal bar phenomenon is modelled numerically by the natural convection of 
a fluid contained in a two-dimensional triangular domain. The non-rotating case 
considered here is appropriate to laboratory models of the thermal bar. Three sets 
of results are presented reflecting varying degrees of nonlinearity. The results are 
discussed in relation to available theoretical and experimental results. 

1. Introduction 
At the end of winter, the water temperature in many temperate lakes is less than 

4"C, the temperature at which water achieves its maximum density. As the spring 
warming proceeds, the shallow nearshore waters heat more rapidly than the deeper 
parts. As a consequence, the 4°C isotherm propagates out from the shore and to 
either side of it the horizontal pressure gradient has opposite signs. This leads to a 
double-cell circulation pattern with downwelling in the vicinity of the 4°C isotherm. 
This isotherm is called the thermal bar and inhibits horizontal transport from the 
shallows to the deeper parts of the lake. A similar phenomenon occurs at the end 
of autumn as the lake waters are cooled towards 4°C. The shallow waters cool more 
rapidly and because of the symmetry of the density relation about 4"C, a circulation 
pattern develops which is similar to that occurring at the end of winter. 

The thermal bar has been the subject of a number of field experiments. Malm 
et al. (1993) report temperature and current measurements made during the spring 
1991 thermal bar event in Lake Ladoga. The main results are that the isotherms 
were nearly vertical throughout the study region and there is a significant amount 
of horizontal heat transport from the warmer nearshore waters into the thermal bar 
region. The vertical isotherms throughout the study region are in contrast to the 
results of other field studies (for example, Hubbard & Spain 1973 or Malm et al. 
1994) which show a stably stratified region on the warmer nearshore side of the 
thermal bar. The vertical isotherms observed by Malm et al. (1993) are due to the 
significant amount of wind-induced vertical mixing. The vertical mixing led to the 
approximately spatially uniform surface heat flux being distributed approximately 
uniformly over the local depth. This, combined with the variable topography, led 
to nearly vertical isotherms. Malm et al. (1993) also observed a complex, largely 
wind-driven, circulation pattern. In the above field experiments it was found that the 
circulation associated with the thermal bar was dominated by Coriolis effects. 

There have been a number of theoretical and numerical studies of the thermal 
bar in the rotating frame. Huang (1972) derived an asymptotic solution (based on 
small Rossby number) for the steady-state temperature and circulation pattern in 
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Lake Michigan. He found general agreement between his results and available field 
measurements of Lake Michigan. Bennett (1971) numerically studied an idealized 
model for the thermal bar. In his hydrostatic model, there was no variation in the 
longshore direction though Coriolis effects were included. He found that the flow was 
generally in geostrophic balance, with longshore velocities being generally an order 
of magnitude greater than offshore velocities. Malm & Zilitinkevich (1994) calculated 
the circulation in a convectively mixed (temperature independent of depth) lake. 
Their steady linear solutions were in qualitative agreement with field observations. 
More recently, Malm (1994) numerically modelled the circulation associated with the 
thermal bar. Malm’s model was similar to Bennett’s (1971) model with the principal 
difference being that Malm’s model was not hydrostatic. Malm also considered the 
effect of wind on the circulation. 

The thermal bar in the non-rotating frame (which is the focus of this paper) has 
been studied experimentally by Elliott & Elliott (1969, 1970) and Kreyman (1989). 
Despite the absence of Coriolis effects, those experiments were able to reproduce in 
the laboratory many of the features of the thermal bar observed in the field. In those 
experiments, water at less than 4°C contained in a shallow triangular tank was heated 
from above. In Elliott & Elliott’s experiments, the heating was via infra-red lamps 
which meant that most of the heat input occurred in the top 1 or 2 cm of the 13 cm 
deep tank. This led to a strongly stratified warm region in the shallow end of the tank 
behind the thermal bar and a vertically well-mixed cold region ahead of the thermal 
bar. This is very similar to the structure observed in Lake Superior by Hubbard & 
Spain (1973). The surface heating in Kreyman’s (1989) experiments was via lamps 
with most of their heat in the visible spectrum. This meant that the heat penetrated 
deeper into the water and led to a weaker stratification in the shallows than that 
observed by Elliott & Elliott. 

Many theoretical studies of the thermal bar in the non-rotating frame have concen- 
trated on modelling the heat balance associated with the propagation of the thermal 
bar. In conjunction with their experimental work, Elliott & Elliott (1970) developed 
a two-dimensional model which neglected the horizontal transport of heat. By dis- 
tributing a surface heat flux over the local depth and balancing this against the rate 
of increase of temperature, Elliott & Elliott concluded that the thermal bar would 
move out from the shore at a constant speed given by 

propagation speed = Zo/(poC,A( T, - To)) (1.1) 

where 10 is the surface heat flux, po is the reference density, C, is the specific heat of 
water, TO is the initial temperature of the water, T, is the temperature at which the 
density maximum occurs and A is the bottom slope. Note that the propagation speed 
is constant only if all the parameters on the right-hand side of (1.1) are constant. 
Elliott & Elliott found general agreement with their experiments except that the 
propagation of the thermal bar seemed to have two distinct phases; an initial ‘slow’ 
phase where it moved out more slowly than predicted and a later ‘fast’ stage where it 
moved out more rapidly than predicted. A similar two-phase propagation was noted 
by Kreyman (1989). Zilitinkevich, Kreiman & Terzhevik (1992) describe a more 
complex heat balance model that allows for the horizontal transport of heat from 
the warm shallow regions into the vicinity of the thermal bar thereby increasing its 
propagation speed. This more complex heat balance model was able to reproduce the 
‘fast’ phase of the thermal bar’s propagation. Elliott (1970) developed a model for the 
circulation associated with the thermal bar by assuming a balance between vertical 
shear and the horizontal pressure gradient. In that model, the flow was driven by an 
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unsteady temperature field derived from a one-dimensional (in the vertical) diffusion 
equation with a surface heat flux. Elliott found reasonable agreement between his 
results and the experimental results of Elliott & Elliott (1969, 1970). However, the 
spin-up time scale based on the depth of the experimental tank and molecular values 
for viscosity suggests that a viscouslbuoyancy balance would not be achieved in the 
entire tank before the experiment ended and that inertial effects, particularly in the 
deeper parts of the tank, could be important. Farrow (1995, hereafter referred to as 
I) presented an asymptotic solution (based on small bottom slope) for an idealized 
model for the thermal bar phenomenon in the non-rotating frame that included 
inertial effects. One of the results of that work is that inertial effects lead to a slower 
propagation speed for the thermal bar than those predicted by previous heat-balance- 
based estimates. In that work, the thermal bar and the point on the surface where 
the downwelling occurs are distinct features and can be separated by an arbitrarily 
large distance. 

In a departure from the heat balance or general circulation models, Kay, Kuiken 
& Merkin (1995) examined the detail of the downwelling region of the thermal bar. 
They modelled this region as a sinking plume of water at temperatures near the 
density maximum. Their steady-state boundary layer analysis yielded the vertical 
velocity and temperature structure in the plume as well as the horizontal velocity 
induced in the far field. 

All the above models of the non-rotating case involve some simplification of 
the dynamics, for example by assuming that steady-state conditions prevail or by 
ignoring nonlinear effects. This paper presents unsteady numerical solutions of a 
two-dimensional model of the thermal bar system in the non-rotating frame. The 
model formulation follows very closely that described in I with a vertically uniform 
heating term being an important feature. The aim of the current work is to confirm 
the validity of the asymptotic solution of I as an approximate solution to the full 
model as well as to examine flows in the parameter range where the asymptotic 
solutions break down. The results will be discussed in terms of available theoretical 
and experimental results. 

2. Model formulation 
The model formulation follows very closely that described in I with the main 

difference being that the governing equations are written in polar rather than Cartesian 
coordinates. There are numerical advantages in having the physical boundaries lying 
on coordinate lines. In I, the spring thermal bar is modelled by the natural convection 
of a fluid lying in the region bounded by the lines z = 0 and z = -Ax in the (x,z)- 
plane where A is the slope of the bottom boundary. In terms of (r,B)-coordinates, 
the boundaries are 8 = 0 and 8 = -tan-‘ A. The flow in this region is driven by an 
internal heat source term Q in the heat conservation equation derived by distributing 
a spatially uniform surface heat flux of lo Wm-2 uniformly over the local depth. 
Thus, the heat conservation equation is 

D T  10 - = JcV~T + ___ 
Dt poCpAx 

where po is the reference density, C ,  is the specific heat of water and JC is the thermal 
diffusivity. The heat source term is inversely proportional to the distance from the 
shore which gives rise to horizontal temperature gradients that drive the flow. 

The nonlinear relationship between the density p and the temperature T is of 
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primary importance for the thermal bar phenomenon. For this work, it is assumed to 
take the form 

u ~ A T  - u~AT’  
1 + bAT P - Po = Po 

where po = p(To), A T  = T - TO and (al ,u2,b) are all parameters that depend on the 
reference temperature To. The above form for p (  T )  is identical to that described in 
I and is obtained by truncating the representation found in Appendix F of Gebhart 
et ul. (1988). The above form captures the linear behaviour for small and large T as 
well as the quadratic behaviour near the density maximum. 

Neither the geometry of the flow domain (which is semi-infinite in the idealized 
model of I) nor the nature of the forcing suggest any natural length scales. Length and 
time scales are derived in the present case by balancing two length scales that evolve 
differently with time. The first is a scale for the distance over which viscous effects 
will be felt in a time t :  6 = (vt)’I2, where v is the kinematic viscosity. For the second 
length scale, suppose that the fluid is initially at some temperature T = TO. Balancing 
the heat source and unsteady terms in (2.1) yields a scale for the temperature change 
that depends on t :  

(2.3) 
The horizontal position at which T = T, (where T,,, is some specified temperature) 
is given by 

where the local depth will be h, = Ax,. Note that the above argument is equivalent to 
Elliott & Elliott’s ( 1970) work and immediately leads to the thermal bar propagation 
speed given by (1.1). Identifying h, with 6 yields a vertical length scale h and a time 
scale z: 

T - To - lot/(~oC,Ax). 

x m  - Jotl((Tm - TO>POC,A) (2.4) 

h = Val poCpl(2~2~0)’ (2.5) 

7 = v (alpoC,l(2u210))2 (2.6) 
where T, has been chosen so that the numerator of (2.2) is at its maximum. In 
practice, T, is very close to the maximum density temperature. For consistency with 
the asymptotic results of I, 8 is scaled with A. 

Radial and tangential velocity scales are derived by assuming a viscous/buoyancy 
balance, from which 

u - U = AGrh/z, (2.7) 
W - A U  (2.8) 

Gr = gApoh3/pov2 (2.9) 

where Gr is the Grashof number of the model, 

where Apo = poui/2u2 is a scale for the density perturbation. A scale for the pressure 
perturbation is obtained via a hydrostatic balance p - ghApo. 

The dimensionless Boussinesq equations governing the flow are then 

r r dr  
a u  1 a u  
dr r a9 

u- + -w- 

(2.10) 
i a 2 u  2 2 a w  2 1  1 T - T 2 / 2  

+ - - - A  - - - A  -u--sin(Ae) 

at 

r2 ae2 r2 a8 r2 A l + y T  ’ 
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FIGURE 1. Schematic of the computational flow domain and the coordinate system with the origin 
at the tip of the wedge. The solid triangle indicates the position of the fluid surface. 

aw I d w  1 
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at  

u- + -w- + -wu 
1 a2w 2 2 a ~  2 1  1 T - T2/2 

+ - - + A  - - - A  --w--cos(Ae) , (2.11) 
r2 a02 r2 88 r2 A2 l + y T  

i a  1 aw 
I ar r ae - - ( ru)  + -- = 0 (2.13) 

where y = bal/2a2(- 4.66 x for TO = WC), CT = V / I C  is the Prandtl number and 
all variables are now non-dimensional. The last term on the right-hand side of (2.12) 
is the internal heating term that drives the flow. The last terms on the right-hand 
sides of (2.10) and (2.11) are the buoyancy terms. 

Figure 1 shows a schematic of the computational flow domain in the dimensionless 
coordinate system. There are extra boundaries at r = rmi, and r = rmx that are not 
present in the model described in I. The boundary at r = rmin > 0 is introduced to 
avoid the coordinate singularity at r = 0 and the boundary at r = r,, ensures that 
the computational domain remains finite. Most of the boundary conditions follow 
naturally from I: 

T e = u e = w = O  on e = O ,  (2.14) 
To = u = w = 0 (2.15) 

That is, the upper boundary 0 = 0 is insulated, stress free and not deformed and 
the lower boundary 0 = -80 is insulated, rigid and non-slip. Boundary conditions at 
r = rmin, rmax are derived by assuming that they are rigid and non-slip and that the 
temperature gradients there match those of the asymptotic solution of I : 

u = w = 0 on r = rmin, rmax, (2.16) 
T, = - t / ( r  c o . ~ A 8 ) ~  on r = rmin,rmx. (2.17) 

A non-slip (rather than, say, a stress free) boundary condition is chosen at r = rmax 
as it more representative of what can be achieved in the laboratory. In practice, since 
A << 1, the influence of the boundary conditions at r = rmi, and r = rmax on the bulk 
of the flow is small. Finally, the initial condition is that u = w = T = 0 at t = 0. 

In terms of the dimensionless polar coordinates of the present work, the dimen- 

on 8 = -00 = - tan-' A / A .  
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sionless Cartesian variables used in I are 

x = r c o s ~ 6 ,  z = rA-' sinA6, (2.18) 

(2.19) 

0, 

ucart = u cos A0 - Aw sin A0 and wCart = uA-' sin A0 + w cos AO. 
Thus at the surface 0 = 0 (that is z = 0), x 3 r and ucart E u. In the limit as A 
x = r ,  z = re, uCart E u and w,,,.~ =- u0 + w. 

3. Numerical method 
The system of equations (2.10)-(2.13) is solved numerically using the method 

described by Armfield (1991) with appropriate adaptations to polar coordinates. 
Essentially, the method is a SIMpLE-type scheme applied on a non-staggered mesh 
with QUICK correction (Leonard 1979) for the advection terms. A detailed description 
of SIMPLE-type schemes can be found in Patankar (1980). The approximate pressure 
correction equation that is the hallmark of SIMPLE-type schemes is formulated so as 
to preserve ellipticity (Armfield 1991). The flow is characterized by a steep vertical 
front that moves through the domain. For this reason, a uniform discretization is 
used in the radial direction. In the tangential direction, a non-uniform grid is used 
to resolve boundary layers. A 226 x 53 grid is used here which is sufficient to ensure 
grid scale independence for the model parameters used in this work. The position of 
the left-hand boundary r = rmin is chosen so that it is inside the diffusion-dominated 
flow of the tip region but is not so small as to prohibitively increase computation 
time. The maximum size of the time step is set by the diffusive limit for small r.  The 
values of rmin = 0.4, At = 5 x and rmax = 6 are used in the current work. 

4. Results and discussion 
4.1. Introductory remarks 

Three sets of results are presented here. The first two ($94.2 and 4.3) are motivated by 
the linear asymptotic theory of I. In I, it was found that the thermal bar would move 
out from the shallows at up to 1.5 times the speed of the associated downwelling 
front. The model outlined in 92 has no steady state and the asymptotic theory of 
I only holds for a finite time after initiation. The validity time scale depends on 
A2Gr which in turn is a measure of the relative importance of the nonlinear terms in 
the governing equations. In the nearshore viscous-dominated flow, the constraint is 
t < t, w 2.1(A2Gr)-ll2 whilst in the deeper inertia-dominated flow, the constraint is 
t -= ti w 5.2(A2Gr)-'/3. In 54.2, A and Gr are chosen so that the asymptotic results are 
valid for the duration of the simulation. This provides an opportunity to validate the 
asymptotic results of I. 

It was suggested in I that since the thermal bar is generally ahead of the downwelling 
front then the circulation there would tend to move the surface signature of the thermal 
bar towards the shore. The results of 54.3 test to see if this occurs in practice. Thus 
A and Gr are chosen so that nonlinear effects are visible before the thermal bar has 
reached the end of the computational domain. 

The final set of results (54.4) is motivated by the experimental work of Elliott 
& Elliott (1969, 1970) and Kreyman (1989). As mentioned in $1, experimental 
observations show that the thermal bar has two stages in its propagation from the 
shore: an initial 'slow' and a later 'fast' stage. The asymptotic results of I and the 
numerical results in $54.2 and 4.3 provide an explanation for the initial slow stage but 
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FIGURE 2. Contours of the surface velocity U ( ~ ) ~ ~ , O :  (a) in the (t,x)-plane (from I); and (b)  the 
numerical results in the ( t ,  r)-plane for the linear case A = 0.01, Gr = 500 and u = 10. The contour 
interval is 0.05 and the solid contour is the zero contour. The heavy solid line indicates the position 
of the thermal bar and the + and - symbols indicate the sign of the surface velocity. 

not for the later fast stage. Nonlinear effects play a dominant role in the results of 
94.4. 

4.2. The linear case: A = 0.01, Gr = 5 x lo2 
For these values of A and Gr, t, NN 9 and t i  NN 14, thus the asymptotic results hold, 
at least while the thermal bar is still inside the computational domain. The results of 
this subsection provide an opportunity to validate the asymptotic results of I. 

Figure 2(a) shows a contour plot in the (t, x)-plane of the surface velocity uIz=o from 
the asymptotic results of I. Figure 2(b) shows a similar set of contours but now with 
the numerical results (in the (t ,  r)-plane). The heavy line running diagonally across 
each plot is the surface signature of the thermal bar in each case and the solid contour 
is the uJ,=o = 0 contour where downwelling occurs. Overall, the agreement between 
the two sets of results is quite good. The main exception is near the boundaries 
r = rmin and r = rmax which are absent in the model described in I. In the numerical 
results, the velocity vanishes at these boundaries. 

In the shallows (x < 3), the maximum magnitude of the numerical velocities is as 
much as 6.5% less than that predicted by the asymptotic results. Two effects weaken 
the horizontal pressure gradient in this region. The first is horizontal diffusion. 
The second is the tilting over of the isotherms by the flow combined with vertical 
diffusion. The tilting of the isotherms leads to a vertical temperature gradient that 
diffuses relatively rapidly leading to a lower horizontal density gradient. These effects 
are not included in the asymptotic analysis of I. Note that for t > 1, the downwelling 
front significantly lags the surface signature of the thermal bar. This lag is due to the 
time it takes for the reversal of the pressure gradient associated with the passing of the 
thermal bar to overcome the inertia of the existing flow. For t < 2, the downwelling 
front is in a region where the main momentum balance is between buoyancy and 
vertical shear so the flow reversal there occurs as soon as there is a change in sign 
of the pressure gradient. The downwelling front moves out slightly more slowly in 
the numerical results as horizontal diffusion weakens the temperature gradient, thus 
weakening the pressure gradient that is to reverse the flow. 

Figures 3(a) and 3(b) show instantaneous streamline plots in the (x,z)-plane at 
t = 5 for the two different sets of results. In the asymptotic results, there is no vertical 
boundary for large x so the streamlines there are not closed. Again, the agreement 
between the two sets of results is quite good although the position of the dividing 
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FIGURE 3. Streamline plot at t = 5 for ( a )  the asymptotic solution of I and (b)  the numerical results 
for the linear case A = 0.01, Gr = 500 and D = 10. The contour interval is 0.04 and the arrow heads 
indicate the flow direction. The dashed line indicates the position of the thermal bar. 

streamline and the magnitude of the circulation differ slightly for the reasons outlined 
above. Note that in both cases the dividing streamline is tilted over, reflecting the 
three-layer velocity structure that occurs as the circulation reverses. The dashed line 
in figure 3 denotes the position of the thermal bar and is vertical in both cases. 

4.3. The weakly nonlinear case: A = 0.01: Gr = 2 x lo4 
Here, t ,  = 1.5 and ti = 4.1 so nonlinear effects will be evident before the thermal bar 
has reached the end of the computational domain. However the effects are not so 
great as to significantly disturb the circulation structure; they are apparent only in 
the temperature field. 

Figure 4 shows contours of the surface velocity in the (t,r)-plane. As before, the 
heavy solid line is the surface signature of the thermal bar and the solid line is the 
zero contour. The dotted line indicates the position of the thermal bar according to 
the linear results. Overall, the results are qualitatively similar to the linear case of the 
previous section. However, both the thermal bar and the downwelling front move out 
more slowly than for the linear case. Also, the fluid velocities are generally smaller. 

The smaller fluid velocities are due to the weaker pressure gradient associated with 
the tilting over of the isotherms by the flow and the subsequent vertical diffusion. Note 
that this comment refers to the non-dimensional velocities; the dimensional velocities 
scale with Gr which in this case is twenty times greater than that of $4.2. The tilting 
over of the isotherms also accounts for the thermal bar moving out more slowly 
than for the linear case. The circulation ahead of the downwelling front distorts the 
originally vertical isotherms, moving the surface signature of the thermal bar towards 
the downwelling front. The continual weakening of density gradients also leads to the 
downwelling front moving out more slowly than for the linear case. The reduction in 
speed is much greater for the thermal bar than it is for the downwelling front and the 
possibility exists that they could eventually meet as nonlinear effects increase. This 
does not occur in the current case but it does occur in the results of the next section. 
At t = 5.6, some fluid that is at the maximum density temperature emerges from the 
end wall at r = 6 and moves into the interior. This is fluid that has been carried 
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FIGURE 4. Contours of the surface velocity for the weakly nonlinear case A = 0.01, Gr = 2 x lo4 
and cr = 10. The heavy solid line indicates the position of the thermal bar and the solid contour is 
the zero contour. The dotted line indicates the position of the thermal bar according to the linear 
results. 

upwards from the depths by the strong vertical jet associated with the solid boundary 
at r = 6. This jet can be seen in figure 5 where streamlines and temperature contours 
at t = 5 are shown. In figure 5,  the dashed line denotes the position of the thermal 
bar. Not long after t = 5, the thermal bar intersects the jet at r = 6 which quickly 
leads to fluid at maximum density reaching the surface. Also evident in figure 5 is the 
effect of the flow on the originally vertical isotherms. The circulation has distorted 
the isotherms so that they resemble velocity profiles. Ahead of the downwelling front, 
the circulation has pushed the surface signature of the thermal bar towards the shore 
which leads to the slower propagation speed (compared with the linear result) evident 
in figure 4 and discussed above. A comparison of figures 3(b) and 5 shows that the 
effect on the circulation structure is less significant. 

4.4. The nonlinear case: A = 0.1, Gr = 5 x lo3 
The parameter values used in this section are representative of the values realized 
in the experiments of Elliott & Elliott (1969, 1970) and Kreyman (1989). Kreyman 
reported a number of experiments with a range of different heating magnitudes 
and initial temperatures. Assuming molecular values of v, Kreyman’s experiments 
were in the range Gr = 4000-57000 with the vertical length scale h in the range 
4.1-7.7 cm. This last range means that the tank had a non-dimensional length in 
the range r,,, = 1.9-3.7. This is smaller than the rmax = 6 assumed in the current 
work, however the effect of the end wall is generally restricted to the near end region. 
In the present work, the vertically uniform heat source that drives the flow gives 
rise to larger temperature gradients (and larger velocities) than those realized in the 
laboratory. Thus, Gr is chosen from the lower part of the range outlined above: 
Gr = 5000. Kreyman’s experimental tank had A = 0.1. Despite the difference in the 
heat input mechanism, the results presented below reproduce many of the features 
observed in the laboratory. For these values of A and Gr, t ,  = 0.3 and ti = 1.4 so 
nonlinear effects should be evident shortly after initiation. 

Figure 6 is a contour plot in the (t,r)-plane of the surface velocity. As for figure 2, 



288 

Z -4 O ;  

D. E.  Farrow 

; 
I 
0 2 4 6 

I J 

X 
0 2 4 6 

FIGURE 5. Streamlines and temperature contours at t = 5 for the weakly nonlinear case. The 
contour interval for the streamlines is 0.04 and for the temperature contours it is 0.5. The dashed 
line indicates the position of the thermal bar. 

0 2 4 
t 

6 

FIGURE 6.  Contour plot of the surface velocity in the (t,x)-plane using the results of the nonlinear 
case A = 0.1, Gr = 5000 and 0 = 10. The solid contour is the zero contour while the heavy solid 
line indicates the surface signature of the thermal bar. The contour interval is 0.02. The dotted line 
indicates the position of the thermal bar according to the linear results. 

the solid contour is the zero contour and the heavy line (which obscures the solid 
contour) running diagonally across the plot is the surface signature of the thermal 
bar. The dotted line indicates the position of the thermal bar according to the linear 
results. Note that the contour interval in this figure is 0.02 whereas it is 0.05 in 
figure 2. The maximum (dimensionless) surface velocity in figure 2 is approximately 
0.3 while in figure 6, it is approximately 0.06. 

The flow development can be divided into three stages. During the initial stage 
(0 < t < l), the results are qualitatively similar to the linear case. The thermal bar 
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and the downwelling front are distinct features and they each propagate out from the 
shallows at close to the speeds predicted by the linear results. 

At t m 2, the thermal bar and the downwelling front merge to form a single feature. 
This signals the beginning of the second stage (2 < t < 4) of the flow. The merging 
of the two features also signals the end of the range where the asymptotic results 
of I provide a reasonable description of the flow. In this intermediate stage of the 
flow development, the thermal bar structure travels outward at a much greater speed: 
up to 70% faster than predicted by the linear results. During this stage, the surface 
velocity behind the thermal bar does not increase with time as rapidly as it does in 
the linear case. The flow tilts the isotherms thereby reducing the magnitude of the 
horizontal pressure gradient, thus there is less energy available to drive the flow. 

At t m 4.5, the flow development enters its final stage where the effects of the 
end wall at r = rmax are important. In this stage, the flow consists of a number of 
circulation cells. Also visible is fluid at the maximum density temperature ahead of 
the thermal bar. As will be seen later, this is fluid that was part of a gravity current 
that has travelled down the sloping bottom and was then carried upwards by the 
recirculating flow associated with the end wall. The fluid at maximum density is 
carried outwards by the recirculating flow over fluid of a lesser density, which is a 
potentially unstable configuration. The local Grashof number at t = 4.5 based on the 
depth and vertical density difference at r = 5 is O(105). This is far in excess of the 
critical value O( lo2) for the onset of secondary motion. This instability gives rise to 
the multiple-cell convection evident for t > 4.5. A short time after entering the final 
stage, the temperature is everywhere greater than that at which the density maximum 
occurs and the subsequent flow is of little interest in the current work. In any case, 
the multiple-cell convection is a consequence of the end wall which would not be 
present in a geophysical flow. 

The three distinct stages of the flow development can be seen in figure 7 where 
instantaneous streamline plots and isotherms are shown for various times. The 
solution at t = 1 is representative of the initial stage of the flow where the circulation 
is qualitatively similar to the linear results. However the effects of advection are 
already evident as the temperature contours have been noticeably distorted from the 
vertical by the flow. Note that the dividing streamline is tilted slightly to the left as 
predicted by the asymptotic results of I. 

By t = 2, the thermal bar is now a single structure with the dividing streamline 
and the maximum-density contour coinciding at the surface. At this time, a surface 
jet of warm water has started to emerge from the shallows and the isotherms are 
significantly tilted over in that region. At t = 2, the circulation magnitude is close 
to the maximum value that it takes during the simulation. For later times, the flow 
has tilted the isotherms thereby significantly reducing horizontal pressure gradients. 
Thus, the amount of energy available to drive a flow is reduced. 

By t = 3, the flow development is well into the intermediate stage. The strong 
surface jet is carrying warm fluid out from the shallows leading to an increased 
propagation speed of the surface signature of the thermal bar. At the leading edge of 
the surface jet, there is strong downwelling and enhanced horizontal gradients. Note 
that the dividing streamline is now tilted over to the right which is in the opposite 
direction to that predicted by the asymptotic theory. Advection is now playing a 
dominant role in the dynamics with the result that the isotherms behind the thermal 
bar are nearly horizontal. This is despite the heating being vertically uniform and in 
contrast to the vertical isotherms of the asymptotic solution of I. 

Another feature of the intermediate stage is a gravity current consisting of fluid at 
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FIGURE 7. Streamline and temperature contours at a various times from the results of the nonlinear 
case. The dashed line in each plot indicates the position of the thermal bar. The contour intervals 
are 0.01 for the streamfunction and 0.5 for the temperature plots. 

close to maximum density travelling down the sloping bottom. This gravity current 
advances much more rapidly than the surface jet owing to the favourable circulation 
ahead of the thermal bar as well as the extra acceleration associated with the sloping 
bottom. The gravity current and the warm surface jet combine to yield a complicated 
structure for the thermal bar. This makes it difficult to define the 'position' x ( t )  of 
the thermal bar in a consistent way. 

At t = 4 the flow development is near the end of the intermediate stage. The surface 
jet is still advancing though it is slightly deeper than it was at t = 3. The surface 
jet is deepening much more slowly than the topography and at t = 4 is occupying 
approximately 25% of the total depth at its head. The dividing streamline has tilted 
further over to the right as the warm surface jet progresses. The gravity current has 
now travelled the entire length of the domain and is being carried up to the surface 
by the anti-clockwise circulation ahead of the thermal bar. 

The circulation and temperature structure at t = 5 is representative of the final 
stage of the flow where there are multiple circulation cells and the fluid is everywhere 
warmer than the temperature at which the density maximum occurs. Since the density 
is now a monotonic function of the temperature, the subsequent flow is of little interest 
in the present work. In any case, there are features present that have relatively few 
grid points to resolve them and it is not reasonable to suppose that the results for 
t > 5 are grid-scale independent. 
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FIGURE 8. Detail of the leading edge of the warm surface jet at t = 4. The dashed lines are 
temperature contours and the solid lines are streamlines. The dot-dash line indicates the position of 
the thermal bar. The contour intervals for the temperature and streamfunction are 0.25 and 0.005 
respectively. 

Figure 8 shows a detail of the leading edge of the warm surface jet at t = 4. Just 
behind the leading edge, the converging flow has set up strong horizontal temperature 
gradients. Note however that the corresponding density gradients are relatively weak 
since the density is a weak function of temperature close to the density maximum. The 
strong gradients all occur to the left of the density-maximum contour which acts as 
a strong barrier to horizontal transport. It has already been noted that the advection 
velocity behind the thermal bar is greater than its propagation speed. The flow that is 
in excess to the propagation is directed downwards as a narrow sinking jet. This type 
of feature has been observed by Ivey & Hamblin (1989) in their laboratory study of 
convection of water close to the density maximum. In dimensional terms, the ratio of 
the fluid velocities immediately behind the head of the surface jet and the propagation 
speed is approximately two to one. Thus a comparison between the present moving 
downwelling region and the stationary front in hey & Hamblin’s experiments can 
only be qualitative. A feature of the sinking jet is the overshoot of the isotherms as 
the warm surface fluid is carried downwards. This overshoot is also a characteristic 
of the sinking jets observed by hey & Hamblin. It is clear from figure 8 that the 
maximum-density contour and the dividing streamline do not precisely coincide. This 
must be the case if advection is to contribute to the propagation of the thermal bar; 
streamlines must cross the maximum-density contour for the flow to carry it forward. 

The structure of the sinking region at the head of the surface jet is reminiscent of 
the sinking plume considered by Kay et al. (1995) in their boundary layer analysis 
of the thermal bar. The main difference is that the structure in the present results 
is highly non-symmetric with very small temperature gradients to the right of the 
thermal bar. Given this difference and the unsteady nature of the results, it is not 
clear how the results of Kay et al. can be applied to the present case except to note 
that the concentrated isotherms and streamlines resemble a boundary layer structure. 

The non-dimensional radial (horizontal) advective heat transfer per unit width 
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FIGURE 9. Time series of the radial advective heat transfer H at a number 
of different values of r for the nonlinear case. 

across a section located at r =constant is 

The heat transfer has been non-dimensionalized by hlo Wm-'. The total heat transfer 
includes a conductive component but this is several orders of magnitude smaller than 
the advective component and is thus not discussed here. Note that for H to be 
non-zero, there must be some vertical structure in the temperature otherwise H = 0 
by virtue of conservation of mass. Figure 9 shows a times series of H at a number 
of different values of r .  Note that H > 0 for all times both before and after the 
thermal bar has passed a particular station. Ahead of the thermal bar, the circulation 
is generally anti-clockwise. This carries warm fluid down the slope and cooler water 
towards the tip at the surface. This yields a net transfer of heat to the right. Behind 
the thermal bar, the circulation is generally clockwise with a warm surface outflow 
which again yields a net positive heat flux. 

At each station, H is small until t = 1 by which time advection has set up a 
significant thermal stratification both behind and ahead of the thermal bar. The 
heat transport then rises as the circulation and stratification strengthen. Eventually, 
the approaching thermal bar weakens the circulation and the heat transfer starts to 
drop. Note that the maximum H before the arrival of the thermal bar occurs at 
approximately the same time of t = 2 at all stations except r = 1. As a function of t, 
the surface velocity is at its greatest near t = 2 at all stations except r = 1 (see figure 6). 
The drop in the heat transfer reflects the decreasing magnitude of the circulation. At 
r = 1, there is no local maximum of the surface velocity near t = 2 though it appears 
to approach a finite maximum as t increases. This is reflected in the behaviour of the 
advective heat transfer at r = 1. The heat transfer reaches a maximum as the flow 
and temperature reach a quasi-steady state where the horizontal advection of heat 
is balanced by vertical diffusion. The vertically averaged temperature continues to 
increase but the vertical and horizontal gradients achieve a steady state, as does the 
circulation. 
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The arrival of the warm surface jet at stations r = 2, 3, 4 and 5 causes a sharp 
increase in H. In fact, the local minimum that precedes this increase is a good 
indicator of the arrival time of the surface jet. This sudden jump is not surprising 
given the large temperature gradients associated with the leading edge of the surface 
jet (see figure 8). For times greater than t NN 5, the time series at each station become 
quite erratic as the circulation structure breaks up into many cells. As was noted 
earlier, the results for t > 5 are not necessarily independent of the grid scale and so 
interpretation of the behaviour of H for these later times is difficult. 

A comparison of the results of this simulation with available experimental data is 
necessarily largely qualitative. As has already been noted, the heat input mechanism 
assumed in the current work is significantly different from that of the laboratory work 
of Elliott & Elliott (1969, 1970) and Kreyman (1989). Despite this, the current results 
capture some of the important features of the experimental work. The dimensionless 
length of the experimental tank used by Kreyman was in the range 1 = 2-4. This 
means that the present results are relevant up to t rn 4 after which time the thermal 
bar is outside the experimental domain. 

Despite the vertically uniform heat source, the present results include a strongly 
stratified region in the shallows behind the thermal bar. In the present results, the 
stratified region is set up by advection. The stratification behind the thermal bar is 
much more pronounced than it is in the deeper parts which is consistent with both 
experimental and field observations though they may arise via different mechanisms. 
In fact, the stratification in the shallows is much stronger in the present results than 
it is in the experimental results of Kreyman (1989) or Elliott & Elliott (1969, 1970). 
In dimensional terms, a typical vertical temperature difference is 6-8" in the present 
results whereas it is 4-5" in Kreyman's results and 2-3" in Elliott & Elliott's. This is 
due to the initially much larger temperature differences that occur in the vertically 
integrated heat input model considered here. 

A consequence of the larger temperature gradients is larger fluid velocities. The 
maximum velocity observed by Kreyman (1989) was = 10-4m s-'. The maximum 
velocity predicted by the numerical results is = 2 x 10-4ms-'. This is despite Gr 
being chosen from the lower end of the range achieved in the experiments. The larger 
velocities in the numerical results suggests that advection might be more significant 
in the present results than in Kreyman's experiments. 

Kreyman (1989) and Elliott & Elliott (1970) noted that some time after the initiation 
of their experiments, the propagation speed of the thermal bar suddenly increased. In 
fact they found that for small times, the propagation speed is less than that predicted 
by a purely heat-balance-based estimate. For larger times, the speed is greater than 
that based on the same prediction. A similar increase in propagation speed occurs 
in the present results at a non-dimensional time of t rn 2 which is consistent with 
the times observed by Kreyman and Elliott & Elliott. The mechanism that gives rise 
to this increase in speed is now clear; it is via the formation of a warm surface jet 
emanating from the shallows with a depth at its head less than the local fluid depth. 
The advancing surface jet is fed by warm water from the shallows and there is strong 
downwelling at its head. 

5.  Concluding remarks 
The model considered in this paper is a considerable simplification of the thermal 

bar phenomenon. The most striking simplification is the use of a vertically uniform 
heat source to drive the model. Despite this, when nonlinear effects are important, the 
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model produces many of the features observed in laboratory models of the thermal 
bar. These include a strongly stratified region in the shallows and an initial ‘slow’ and 
then a ‘fast’ propagation speed of the thermal bar. 

Including different heat input mechanisms in a numerical model is fairly straight- 
forward. However, accurate and systematic modelling of heating mechanisms that 
operate in a real lake is difficult and beyond the scope of this paper. For example, 
Rodgers (1968) noted that the penetration depth of solar radiation varied consider- 
ably across the thermal bar. Also, the heat flux at the surface due to sensible and 
latent heat transfer both in the field and the laboratory is difficult to quantify. 

It appears, in the non-rotating case considered here, that the propagation of the 
thermal bar is governed by the conditions at the head of the warm surface jet that 
emanates from the shallows. Perhaps a boundary layer analysis similar to that of 
Kay et al. (1995) that takes into account propagation and unsteadiness could provide 
some insight into the propagation mechanism. Coriolis effects would also modify the 
propagation of the jet as well as the overall circulation structure. 

The author gratefully acknowledges the many suggestions for improvement made 
by S .  Brown and the anonymous reviewers on earlier versions of this paper. 
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